Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Environ Health Perspect ; 132(3): 37003, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445893

RESUMO

BACKGROUND: Air pollution risk assessments do not generally quantify health impacts using multipollutant risk estimates, but instead use results from single-pollutant or copollutant models. Multipollutant epidemiological models account for pollutant interactions and joint effects but can be computationally complex and data intensive. Risk estimates from multipollutant studies are therefore challenging to implement in the quantification of health impacts. OBJECTIVES: Our objective was to conduct a case study using a developmental multipollutant version of the Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) to estimate the health impact associated with changes in multiple air pollutants using both a single and multipollutant approach. METHODS: BenMAP-CE was used to estimate the change in the number of pediatric asthma emergency department (ED) visits attributable to simulated changes in air pollution between 2011 and 2025 in Atlanta, Georgia, applying risk estimates from an epidemiological study that examined short-term single-pollutant and multipollutant (with and without first-order interactions) exposures. Analyses examined individual pollutants (i.e., ozone, fine particulate matter, carbon monoxide, nitrogen dioxide (NO2), sulfur dioxide, and particulate matter components) and combinations of these pollutants meant to represent shared properties or predefined sources (i.e., oxidant gases, secondary pollutants, traffic, power plant, and criteria pollutants). Comparisons were made between multipollutant health impact functions (HIF) and the sum of single-pollutant HIFs for the individual pollutants that constitute the respective pollutant groups. RESULTS: Photochemical modeling predicted large decreases in most of the examined pollutant concentrations between 2011 and 2025 based on sector specific (i.e., source-based) estimates of growth and anticipated controls. Estimated number of avoided asthma ED visits attributable to any given multipollutant group were generally higher when using results from models that included interaction terms in comparison with those that did not. We estimated the greatest number of avoided pediatric asthma ED visits for pollutant groups that include NO2 (i. e., criteria pollutants, oxidants, and traffic pollutants). In models that accounted for interaction, year-round estimates for pollutant groups that included NO2 ranged from 27.1 [95% confidence interval (CI): 1.6, 52.7; traffic pollutants] to 55.4 (95% CI: 41.8, 69.0; oxidants) avoided pediatric asthma ED visits. Year-round results using multipollutant risk estimates with interaction were comparable to the sum of the single-pollutant results corresponding to most multipollutant groups [e.g., 52.9 (95% CI: 43.6, 62.2) for oxidants] but were notably lower than the sum of the single-pollutant results for some pollutant groups [e.g., 77.5 (95% CI: 66.0, 89.0) for traffic pollutants]. DISCUSSION: Performing a multipollutant health impact assessment is technically feasible but computationally complex. It requires time, resources, and detailed input parameters not commonly reported in air pollution epidemiological studies. Results estimated using the sum of single-pollutant models are comparable to those quantified using a multipollutant model. Although limited to a single study and location, assessing the trade-offs between a multipollutant and single-pollutant approach is warranted. https://doi.org/10.1289/EHP12969.


Assuntos
Asma , Poluentes Ambientais , Criança , Humanos , Georgia/epidemiologia , Asma/epidemiologia , Oxidantes , Material Particulado
2.
Environ Sci Technol ; 57(50): 21235-21248, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38051783

RESUMO

Due in part to climate change, wildfire activity is increasing, with the potential for greater public health impact from smoke in downwind communities. Studies examining the health effects of wildfire smoke have focused primarily on fine particulate matter (PM2.5), but there is a need to better characterize other constituents, such as hazardous air pollutants (HAPs). HAPs are chemicals known or suspected to cause cancer or other serious health effects that are regulated by the United States (US) Environmental Protection Agency. Here, we analyzed concentrations of 21 HAPs in wildfire smoke from 2006 to 2020 at 309 monitors across the western US. Additionally, we examined HAP concentrations measured in a major population center (San Jose, CA) affected by multiple fires from 2017 to 2020. We found that concentrations of select HAPs, namely acetaldehyde, acrolein, chloroform, formaldehyde, manganese, and tetrachloroethylene, were all significantly elevated on smoke-impacted versus nonsmoke days (P < 0.05). The largest median increase on smoke-impacted days was observed for formaldehyde, 1.3 µg/m3 (43%) higher than that on nonsmoke days. Acetaldehyde increased 0.73 µg/m3 (36%), and acrolein increased 0.14 µg/m3 (34%). By better characterizing these chemicals in wildfire smoke, we anticipate that this research will aid efforts to reduce exposures in downwind communities.


Assuntos
Poluentes Atmosféricos , Incêndios Florestais , Acetaldeído , Acroleína , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Exposição Ambiental , Formaldeído , Material Particulado/análise , Fumaça/efeitos adversos , Estados Unidos
4.
MMWR Morb Mortal Wkly Rep ; 72(34): 926-932, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37616233

RESUMO

During April 30-August 4, 2023, smoke originating from wildfires in Canada affected most of the contiguous United States. CDC used National Syndromic Surveillance Program data to assess numbers and percentages of asthma-associated emergency department (ED) visits on days with wildfire smoke, compared with days without wildfire smoke. Wildfire smoke days were defined as days when concentrations of particulate matter (particles generally ≤2.5 µm in aerodynamic diameter) (PM2.5) triggered an Air Quality Index ≥101, corresponding to the air quality categorization, "Unhealthy for Sensitive Groups." Changes in asthma-associated ED visits were assessed across U.S. Department of Health and Human Services regions and by age. Overall, asthma-associated ED visits were 17% higher than expected during the 19 days with wildfire smoke that occurred during the study period; larger increases were observed in regions that experienced higher numbers of continuous wildfire smoke days and among persons aged 5-17 and 18-64 years. These results can help guide emergency response planning and public health communication strategies, especially in U.S. regions where wildfire smoke exposure was previously uncommon.


Assuntos
Asma , Incêndios Florestais , Humanos , Fumaça/efeitos adversos , Canadá/epidemiologia , Asma/epidemiologia , Serviço Hospitalar de Emergência
6.
Environ Health ; 22(1): 49, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386433

RESUMO

BACKGROUND: Approximately nine million adults in the United States are living with chronic obstructive pulmonary disease (COPD), and positive associations between short-term air pollution exposure and increased risk of COPD hospitalizations in older adults are consistently reported. We examined the association between short-term PM2.5 exposure and hospitalizations and assessed if there is modification by long-term exposure in a cohort of individuals with COPD. METHODS: In a time-referent case-crossover design, we used a cohort of randomly selected individuals with electronic health records from the University of North Carolina Healthcare System, restricted to patients with a medical encounter coded with a COPD diagnosis from 2004-2016 (n = 520), and estimated ambient PM2.5 concentrations from an ensemble model. Odds ratios and 95% confidence intervals (OR (95%CI)) were estimated with conditional logistic regression for respiratory-related, cardiovascular (CVD), and all-cause hospitalizations. Exposures examined were 0-2 and 0-3 day lags of PM2.5 concentration, adjusting for daily census-tract temperature and humidity, and models were stratified by long-term (annual average) PM2.5 concentration at the median value. RESULTS: We observed generally null or low-magnitude negative associations with short-term PM2.5 exposure and respiratory-related (OR per 5 µg/m3 increase in 3-day lag PM2.5: 0.971 (0.885, 1.066)), CVD (2-day lag: 0.976 (0.900, 1.058) and all-cause (3 day lag: 1.003 (0.927, 1.086)) hospitalizations. Associations between short-term PM2.5 exposure and hospitalizations were higher among patients residing in areas with higher levels of annual PM2.5 concentrations (OR per 5 µg/m3 in 3-day lag PM2.5 for all-cause hospitalizations: 1.066 (0.958, 1.185)) than those in areas with lower annual PM2.5 concentrations (OR per 5 µg/m3 in 3-day lag PM2.5 for all-cause hospitalizations: 0.914 (0.804, 1.039)). CONCLUISONS: Differences in associations demonstrate that people in areas with higher annual PM2.5 exposure may be associated with higher risk of hospitalization during short-term increases in PM2.5 exposure.


Assuntos
Doenças Cardiovasculares , Doença Pulmonar Obstrutiva Crônica , Idoso , Humanos , Hospitalização , North Carolina/epidemiologia , Material Particulado/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Estudos Cross-Over
7.
Environ Sci Technol ; 56(2): 1202-1210, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34965106

RESUMO

Air pollution risk assessments typically estimate ozone-attributable mortality counts using concentration-response (C-R) parameters from epidemiologic studies that treat temperature as a potential confounder. However, some recent epidemiologic studies have indicated that temperature can modify the relationship between short-term ozone exposure and mortality, which has potentially important implications when considering the impacts of climate change on public health. This proof-of-concept analysis quantifies counts of temperature-modified ozone-attributable mortality using temperature-stratified C-R parameters from a multicity study in which the pooled ozone-mortality effect coefficients change in concert with daily temperature. Meteorology downscaled from two global climate models is used with a photochemical transport model to simulate ozone concentrations over the 21st century using two emission inventories: one holding air pollutant emissions constant at 2011 levels and another accounting for reduced emissions through the year 2040. The late century climate models project increased summer season temperatures, which in turn yields larger total counts of ozone-attributable deaths in analyses using temperature-stratified C-R parameters compared to the traditional temperature confounder approach. This analysis reveals substantial heterogeneity in the magnitude and distribution of the temperature-stratified ozone-attributable mortality results, which is a function of regional variability in both the C-R relationship and the model-predicted temperature and ozone.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Mudança Climática , Modelos Teóricos , Ozônio/análise , Temperatura
8.
Atmos Environ (1994) ; 2622021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35572717

RESUMO

Multi-city epidemiologic studies examining short-term (daily) differences in fine particulate matter (PM2.5) provide evidence of substantial spatial heterogeneity in city-specific mortality risk estimates across the United States. Because PM2.5 is a mixture of particles, both directly emitted from sources or formed through atmospheric reactions, some of this heterogeneity may be due to regional variations in PM2.5 toxicity. Using inverse variance weighted linear regression, we examined change in percent change in mortality in association with 24 "exposure" determinants representing three basic groupings based on potential explanations for differences in PM toxicity - size, source, and composition. Percent changes in mortality for the PM2.5-mortality association for 313 core-based statistical areas and their metropolitan divisions over 1999-2005 were used as the outcome. Several determinants were identified as potential contributors to heterogeneity: all mass fraction determinants, vehicle miles traveled (VMT) for diesel total, VMT gas per capita, PM2.5 ammonium, PM2.5 nitrate, and PM2.5 sulfate. In multivariable models, only daily correlation of PM2.5 with PM10 and long-term average PM2.5 mass concentration were retained, explaining approximately 10% of total variability. The results of this analysis contribute to the growing body of literature specifically focusing on assessing the underlying basis of the observed spatial heterogeneity in PM2.5-mortality effect estimates, continuing to demonstrate that this heterogeneity is multifactorial and not attributable to a single aspect of PM.

10.
Atmosphere (Basel) ; 11(5): 1-15, 2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32802480

RESUMO

Scientific evidence spanning experimental and epidemiologic studies has shown that air pollution exposures can lead to a range of health effects. Quantitative approaches that allow for the estimation of the adverse health impacts attributed to air pollution enable researchers and policy analysts to convey the public health impact of poor air quality. Multiple tools are currently available to conduct such analyses, which includes software packages designed by the World Health Organization (WHO): AirQ+, and the U.S. Environmental Protection Agency (U.S. EPA): Environmental Benefits Mapping and Analysis Program - Community Edition (BenMAP - CE), to quantify the number and economic value of air pollution-attributable premature deaths and illnesses. WHO's AirQ+ and U.S. EPA's BenMAP - CE are among the most popular tools to quantify these effects as reflected by the hundreds of peer-reviewed publications and technical reports over the past two decades that have employed these tools spanning many countries and multiple continents. Within this paper we conduct an analysis using common input parameters to compare AirQ+ and BenMAP - CE and show that the two software packages well align in the calculation of health impacts. Additionally, we detail the research questions best addressed by each tool.

11.
Environ Sci Technol ; 54(16): 10191-10200, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32702976

RESUMO

Extensive epidemiologic evidence supports a linear, no-threshold concentration-response (C-R) relationship between long-term exposure to fine particles (PM2.5) and mortality in the United States. While examinations of the C-R relationship are designed to assess the shape of the C-R curve, they do not provide the information needed to quantitatively characterize uncertainty at specific PM2.5 concentrations, which is often needed in the context of risk assessments and benefits analyses. We developed a novel approach, using information that is typically available in published epidemiologic studies, to quantitatively characterize uncertainty at different concentrations along the PM2.5 concentration distribution. Our approach utilizes the annual mean PM2.5 concentration and corresponding standard deviation from a published epidemiologic study to estimate the standard deviation of hypothetical PM2.5 concentration distributions defined at 0.1 µg/m3 increments. The hypothetical distributions are then used to derive adjusted uncertainty estimates in the reported effect estimate at low concentrations (i.e., concentrations lower than the annual mean observed in the study). We demonstrate the application of this method in six individual epidemiologic studies that examined the relationship between long-term PM2.5 exposure and mortality and were conducted in different geographic locations worldwide and at different PM2.5 concentrations. This new method allows for a more comprehensive quantitative evaluation of uncertainty in the shape of the C-R relationship between long-term PM2.5 exposure and mortality at concentrations below the mean annual concentrations observed in current studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental/análise , Mortalidade , Material Particulado/análise , Medição de Risco , Incerteza , Estados Unidos/epidemiologia
12.
Am J Public Health ; 110(5): 655-661, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32191524

RESUMO

Objectives. To investigate potential changes in burdens from coal-fired electricity-generating units (EGUcfs) that emit fine particulate matter (PM2.5, defined as matter with a nominal mean aerodynamic diameter of ≤ 2.5 µm) among racial/ethnic and economic groups after reduction of operations in 92 US EGUcfs.Methods. PM2.5 burdens calculated for EGUs listed in the 2008, 2011, and 2014 National Emissions Inventory were recalculated for 2017 after omitting emissions from 92 EGUcfs. The combined influence of race/ethnicity and poverty on burden estimates was characterized.Results. Omission of 92 EGUcfs decreased PM2.5 burdens attributable to EGUs by 8.6% for the entire population and to varying degrees for every population subgroup. Although the burden decreased across all subgroups, the decline was not equitable. After omission of the 92 EGUcfs, burdens were highest for the below-poverty and non-White subgroups. Proportional disparities between White and non-White subgroups increased. In our combined analysis, the burden was highest for the non-White-high-poverty subgroup.Conclusions. Our results indicate that subgroups living in poverty experience the greatest absolute burdens from EGUcfs. Changes as a result of EGUcf closures suggest a shift in burden from White to non-White subgroups. Policymakers could use burden analyses to jointly promote equity and reduce emissions.


Assuntos
Carvão Mineral , Etnicidade/estatística & dados numéricos , Material Particulado/análise , Pobreza/estatística & dados numéricos , Centrais Elétricas/estatística & dados numéricos , Grupos Raciais/estatística & dados numéricos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental/análise , Humanos , Exposição por Inalação/análise , Método de Monte Carlo , Características de Residência
13.
J Am Stat Assoc ; 1: 1-12, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-33424062

RESUMO

We develop a causal inference approach to estimate the number of adverse health events that were prevented due to changes in exposure to multiple pollutants attributable to a large-scale air quality intervention/regulation, with a focus on the 1990 Clean Air Act Amendments (CAAA). We introduce a causal estimand called the Total Events Avoided (TEA) by the regulation, defined as the difference in the number of health events expected under the no-regulation pollution exposures and the number observed with-regulation. We propose matching and machine learning methods that leverage population-level pollution and health data to estimate the TEA. Our approach improves upon traditional methods for regulation health impact analyses by formalizing causal identifying assumptions, utilizing population-level data, minimizing parametric assumptions, and collectively analyzing multiple pollutants. To reduce model-dependence, our approach estimates cumulative health impacts in the subset of regions with projected no-regulation features lying within the support of the observed with-regulation data, thereby providing a conservative but data-driven assessment to complement traditional parametric approaches. We analyze the health impacts of the CAAA in the US Medicare population in the year 2000, and our estimates suggest that large numbers of cardiovascular and dementia-related hospitalizations were avoided due to CAAA-attributable changes in pollution exposure.

14.
J Expo Sci Environ Epidemiol ; 28(6): 515-521, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30185947

RESUMO

Many epidemiologic studies are designed so they can be drawn upon to provide scientific evidence for evaluating hazards of environmental exposures, conducting quantitative assessments of risk, and informing decisions designed to reduce or eliminate harmful exposures. However, experimental animal studies are often relied upon for environmental and public health policy making despite the expanding body of observational epidemiologic studies that could inform the relationship between actual, as opposed to controlled, exposures and health effects. This paper provides historical examples of how epidemiology has informed decisions at the U.S. Environmental Protection Agency, discusses some challenges with using epidemiology to inform decision making, and highlights advances in the field that may help address these challenges and further the use of epidemiologic studies moving forward.


Assuntos
Tomada de Decisões , Exposição Ambiental/efeitos adversos , Prática de Saúde Pública , Medição de Risco/métodos , Poluição do Ar , Animais , Amianto/efeitos adversos , Biomarcadores , Causalidade , Exposição Ambiental/análise , Métodos Epidemiológicos , Epidemiologia , Humanos , Chumbo/efeitos adversos , Estados Unidos , United States Environmental Protection Agency
15.
Environ Model Softw ; 104: 118-129, 2018 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-29962895

RESUMO

A number of software tools exist to estimate the health and economic impacts associated with air quality changes. Over the past 15 years, the U.S. Environmental Protection Agency and its partners invested substantial time and resources in developing the Environmental Benefits Mapping and Analysis Program - Community Edition (BenMAP-CE). BenMAP-CE is a publicly available, PC-based open source software program that can be configured to conduct health impact assessments to inform air quality policies anywhere in the world. The developers coded the platform in C# and made the source code available in GitHub, with the goal of building a collaborative relationship with programmers with expertise in other environmental modeling programs. The team recently improved the BenMAP-CE user experience and incorporated new features, while also building a cadre of analysts and BenMAP-CE training instructors in Latin America and Southeast Asia.

16.
Am J Public Health ; 108(4): 480-485, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29470121

RESUMO

OBJECTIVES: To quantify nationwide disparities in the location of particulate matter (PM)-emitting facilities by the characteristics of the surrounding residential population and to illustrate various spatial scales at which to consider such disparities. METHODS: We assigned facilities emitting PM in the 2011 National Emissions Inventory to nearby block groups across the 2009 to 2013 American Community Survey population. We calculated the burden from these emissions for racial/ethnic groups and by poverty status. We quantified disparities nationally and for each state and county in the country. RESULTS: For PM of 2.5 micrometers in diameter or less, those in poverty had 1.35 times higher burden than did the overall population, and non-Whites had 1.28 times higher burden. Blacks, specifically, had 1.54 times higher burden than did the overall population. These patterns were relatively unaffected by sensitivity analyses, and disparities held not only nationally but within most states and counties as well. CONCLUSIONS: Disparities in burden from PM-emitting facilities exist at multiple geographic scales. Disparities for Blacks are more pronounced than are disparities on the basis of poverty status. Strictly socioeconomic considerations may be insufficient to reduce PM burdens equitably across populations.


Assuntos
Disparidades nos Níveis de Saúde , Exposição por Inalação/estatística & dados numéricos , Material Particulado , Pobreza/estatística & dados numéricos , Grupos Raciais/estatística & dados numéricos , Negro ou Afro-Americano/estatística & dados numéricos , Humanos , Material Particulado/administração & dosagem , Material Particulado/efeitos adversos , Fatores Socioeconômicos , Estados Unidos , População Branca/estatística & dados numéricos
17.
Environ Int ; 107: 154-162, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28735152

RESUMO

BACKGROUND: Black carbon (BC) is a ubiquitous component of particulate matter (PM) emitted from combustion-related sources and is associated with a number of health outcomes. OBJECTIVES: We conducted a systematic review to evaluate the potential for cardiovascular morbidity and mortality following exposure to ambient BC, or the related component elemental carbon (EC), in the context of what is already known about the associations between exposure to fine particulate matter (PM2.5) and cardiovascular health outcomes. DATA SOURCES: We conducted a stepwise systematic literature search of the PubMed database and employed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for reporting our results. STUDY ELIGIBILITY CRITERIA: Studies meeting inclusion criteria (i.e., include a quantitative measurement of BC or EC used to characterize exposure and an effect estimate of the association of the exposure metric with ED visits, hospital admissions, or mortality due to cardiovascular disease) were evaluated for risk of bias in study design and results. STUDY APPRAISAL AND SYNTHESIS METHODS: Risk of bias evaluations assess some aspects of internal validity of study findings based on study design, conduct, and reporting and identify potential issues related to confounding or other biases. RESULTS: The results of our systematic review demonstrate similar results for BC or EC and PM2.5; that is, a generally modest, positive association of each pollutant measurement with cardiovascular emergency department visits, hospital admissions, and mortality. There is no clear evidence that health risks are greater for either BC or EC when compared to one another, or when either is compared to PM2.5. LIMITATIONS: We were unable to adequately evaluate the role of copollutant confounding or differential spatial heterogeneity for BC or EC compared to PM2.5. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS: Overall, the evidence at present indicates that BC or EC is consistently associated with cardiovascular morbidity and mortality but is not sufficient to conclude that BC or EC is independently associated with these effects rather than being an indicator for PM2.5 mass. SYSTEMATIC REVIEW REGISTRATION NUMBER: Not available.


Assuntos
Poluentes Atmosféricos/análise , Doenças Cardiovasculares/epidemiologia , Serviço Hospitalar de Emergência/estatística & dados numéricos , Hospitalização/estatística & dados numéricos , Fuligem/análise , Poluição do Ar/análise , Carbono/análise , Humanos
18.
Environ Health ; 16(1): 1, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28049482

RESUMO

BACKGROUND: Multi-city population-based epidemiological studies have observed heterogeneity between city-specific fine particulate matter (PM2.5)-mortality effect estimates. These studies typically use ambient monitoring data as a surrogate for exposure leading to potential exposure misclassification. The level of exposure misclassification can differ by city affecting the observed health effect estimate. METHODS: The objective of this analysis is to evaluate whether previously developed residential infiltration-based city clusters can explain city-to-city heterogeneity in PM2.5 mortality risk estimates. In a prior paper 94 cities were clustered based on residential infiltration factors (e.g. home age/size, prevalence of air conditioning (AC)), resulting in 5 clusters. For this analysis, the association between PM2.5 and all-cause mortality was first determined in 77 cities across the United States for 2001-2005. Next, a second stage analysis was conducted evaluating the influence of cluster assignment on heterogeneity in the risk estimates. RESULTS: Associations between a 2-day (lag 0-1 days) moving average of PM2.5 concentrations and non-accidental mortality were determined for each city. Estimated effects ranged from -3.2 to 5.1% with a pooled estimate of 0.33% (95% CI: 0.13, 0.53) increase in mortality per 10 µg/m3 increase in PM2.5. The second stage analysis determined that cluster assignment was marginally significant in explaining the city-to-city heterogeneity. The health effects estimates in cities with older, smaller homes with less AC (Cluster 1) and cities with newer, smaller homes with a large prevalence of AC (Cluster 3) were significantly lower than the cluster consisting of cities with older, larger homes with a small percentage of AC. CONCLUSIONS: This is the first study that attempted to examine whether multiple exposure factors could explain the heterogeneity in PM2.5-mortality associations. The results of this study were found to explain a small portion (6%) of this heterogeneity.


Assuntos
Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Mortalidade , Material Particulado/análise , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Cidades/epidemiologia , Análise por Conglomerados , Exposição Ambiental/efeitos adversos , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Adulto Jovem
19.
Ann Epidemiol ; 27(2): 145-153.e1, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28040377

RESUMO

PURPOSE: Air pollution epidemiology traditionally focuses on the relationship between individual air pollutants and health outcomes (e.g., mortality). To account for potential copollutant confounding, individual pollutant associations are often estimated by adjusting or controlling for other pollutants in the mixture. Recently, the need to characterize the relationship between health outcomes and the larger multipollutant mixture has been emphasized in an attempt to better protect public health and inform more sustainable air quality management decisions. METHODS: New and innovative statistical methods to examine multipollutant exposures were identified through a broad literature search, with a specific focus on those statistical approaches currently used in epidemiologic studies of short-term exposures to criteria air pollutants (i.e., particulate matter, carbon monoxide, sulfur dioxide, nitrogen dioxide, and ozone). RESULTS: Five broad classes of statistical approaches were identified for examining associations between short-term multipollutant exposures and health outcomes, specifically additive main effects, effect measure modification, unsupervised dimension reduction, supervised dimension reduction, and nonparametric methods. These approaches are characterized including advantages and limitations in different epidemiologic scenarios. DISCUSSION: By highlighting the characteristics of various studies in which multipollutant statistical methods have been used, this review provides epidemiologists and biostatisticians with a resource to aid in the selection of the most optimal statistical method to use when examining multipollutant exposures.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Monitoramento Ambiental/métodos , Estudos Epidemiológicos , Material Particulado/análise , Humanos , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...